文章信息
文章題目:Time-resolved reprogramming of single somatic cells into totipotent states during plant regeneration
期刊:Cell
發(fā)表時(shí)間:2025 年 9 月 16 日
主要內(nèi)容:山東農(nóng)業(yè)大學(xué)張憲省教授和蘇英華教授研究團(tuán)隊(duì)首次完整揭示了單個(gè)植物體細(xì)胞如何通過基因重編程“改變命運(yùn)”,最終發(fā)育為完整植株的全過程。該成果不僅破解了困擾科學(xué)界百余年的“植物細(xì)胞全能性”機(jī)制之謎,也為作物遺傳改良與高效再生提供了全新理論支撐。
原文鏈接:
https://doi.org/10.1016/j.cell.2025.08.031
使用TransGen產(chǎn)品:
EasyScript? One-Step gDNA Removal and cDNA Synthesis SuperMix (AE311)
TransStart? Green qPCR SuperMix (AQ101)
ProteinFind? Anti-HA Mouse Monoclonal Antibody (HT301)
pEASY?-Blunt E2 Expression Kit (CE211)
研究背景
1902年,植物細(xì)胞全能性概念被提出,即植物細(xì)胞在適宜條件下可脫分化為全能干細(xì)胞,進(jìn)而發(fā)育為完整植株。然而,其分子機(jī)制始終未解,2005 年《科學(xué)》雜志將“單個(gè)體細(xì)胞如何發(fā)育成完整植株”列為最具挑戰(zhàn)的 125 個(gè)科學(xué)問題之一。
文章概述
研究團(tuán)隊(duì)首先建立了“誘導(dǎo)單細(xì)胞起源的體細(xì)胞胚胎發(fā)生”穩(wěn)定體系,并系統(tǒng)尋找了全能干細(xì)胞的分子標(biāo)記。利用單細(xì)胞測(cè)序、活體成像等技術(shù),首次捕捉到單個(gè)植物細(xì)胞分裂全過程。研究發(fā)現(xiàn),轉(zhuǎn)錄因子 LEC2 與 SPCH 協(xié)同作用激活生長(zhǎng)素合成,使細(xì)胞內(nèi)生長(zhǎng)素特異性大量積累。這一過程促使原本注定發(fā)育為氣孔的前體細(xì)胞脫離氣孔發(fā)育路徑,轉(zhuǎn)化為全能干細(xì)胞,進(jìn)而啟動(dòng)胚胎發(fā)生。研究進(jìn)一步揭示,氣孔前體細(xì)胞存在一個(gè)命運(yùn)分岔點(diǎn):細(xì)胞要么繼續(xù)分化為氣孔,要么進(jìn)入“GMC-auxin”中間態(tài)。在這一中間態(tài)下,細(xì)胞通過染色質(zhì)重塑、翻譯調(diào)控和生長(zhǎng)素信號(hào)的共同作用,激活胚胎發(fā)生程序,推動(dòng)細(xì)胞命運(yùn)從氣孔分化轉(zhuǎn)向全能干細(xì)胞,最終發(fā)育為完整植株。該研究在世界上首次全面解析了單個(gè)植物體細(xì)胞重編程形成全能干細(xì)胞并再生完整植株的分子機(jī)理,這一理論的解析不僅有助于理解植物細(xì)胞發(fā)育的根本規(guī)律,也為精準(zhǔn)調(diào)控植物再生和定向改良作物性狀提供了全新的思路與技術(shù)工具。
模式圖展示氣孔前體細(xì)胞的兩條發(fā)育路徑
全式金生物產(chǎn)品支撐
優(yōu)質(zhì)的試劑是科學(xué)研究的利器。全式金生物的反轉(zhuǎn)錄試劑(AE311)、qPCR 試劑(AQ101)、抗 HA 鼠單克隆抗體(HT301)、E2 平端克隆原核表達(dá)載體(CE211)助力本研究。產(chǎn)品自上市以來,憑借優(yōu)異的性能,深受客戶青睞,多次榮登知名期刊,助力科學(xué)研究。
EasyScript? One-Step gDNA Removal and cDNA Synthesis SuperMix (AE311)
本產(chǎn)品以 RNA 為模板,在同一反應(yīng)體系中,合成第一鏈 cDNA 的同時(shí)去除 RNA 模板中殘留的基因組 DNA。反應(yīng)結(jié)束后,只需在 85℃ 加熱 5 秒鐘,即可同時(shí)失活 TranScript? RT/RI 與 gDNA Remover。
產(chǎn)品特點(diǎn)
? 在同一反應(yīng)體系中,同時(shí)完成反轉(zhuǎn)錄與基因組 DNA 的去除,操作簡(jiǎn)便,降低污染機(jī)率。
? 產(chǎn)物用于 qPCR:反轉(zhuǎn)錄 15 分鐘;產(chǎn)物用于 PCR:反轉(zhuǎn)錄 30 分鐘。
? 反應(yīng)結(jié)束后,同時(shí)熱失活 RT/RI 與 gDNA Remover。與傳統(tǒng)的用 DNase I 預(yù)處理 RNA 的方法相比,避免了處理后熱失活 DNase I 對(duì) RNA 的損傷。
? 合成片段≤8 kb。
TransStart? Green qPCR SuperMix (AQ101)
本產(chǎn)品含雙封閉法 TransStart? Taq 新型熱啟動(dòng)酶、優(yōu)化的雙陽(yáng)離子緩沖液、SYBR Green I 熒光染料、dNTPs、PCR 增強(qiáng)劑、PCR 穩(wěn)定劑。本產(chǎn)品濃度為 2×,使用時(shí)只需加入模板、引物、Passive Reference Dye 和水,使其工作濃度為 1×,即可進(jìn)行反應(yīng)。
產(chǎn)品特點(diǎn)
? 靈敏度高,特異性強(qiáng)。
? 雙陽(yáng)離子緩沖液,增強(qiáng)特異性,減少引物二聚體形成,數(shù)據(jù)準(zhǔn)確。
? 配有適用于不同機(jī)型的 Passive Reference Dye (調(diào)整 PCR 加樣誤差引起的管間差異),數(shù)據(jù)準(zhǔn)確。
ProteinFind? Anti-HA Mouse Monoclonal Antibody (HT301)
本產(chǎn)品為抗 HA 標(biāo)簽鼠單克隆抗體,屬 IgG2b 同型,免疫原為人工合成的 HA 標(biāo)簽多肽序列(YPYDVPDYA)。
產(chǎn)品特點(diǎn)
? 高純度的抗小鼠單克隆抗體,特異性強(qiáng)。
? 高度特異識(shí)別重組蛋白 C 末端、 N 末端或內(nèi)部的 HA 標(biāo)簽(YPYDVPDYA)。
? 適用于定性或定量檢測(cè) HA 融合表達(dá)蛋白。
pEASY?-Blunt E2 Expression Kit (CE211)
本產(chǎn)品利用 5 分鐘快速平端克隆技術(shù)克隆 PCR 產(chǎn)物;利用 T7lac 啟動(dòng)子嚴(yán)謹(jǐn)調(diào)控、高效表達(dá)目的基因。對(duì)照插入片段 750 bp,表達(dá)的蛋白分子量約 27 kDa。
產(chǎn)品特點(diǎn)
? 快速:僅需 5 分鐘。
? 簡(jiǎn)單:加入片段即可。
? 高效:陽(yáng)性率高。
? T7lac 啟動(dòng)子嚴(yán)謹(jǐn)調(diào)控表達(dá)。
? C 端 6×His 蛋白純化標(biāo)簽,方便純化重組蛋白。
使用 EasyScript? One-Step gDNA Removal and cDNA Synthesis SuperMix (AE311) 產(chǎn)品發(fā)表的部分文章:
? Wang Y K, Song S Y, Zhang W X, et al. Deciphering phenylalanine-derived salicylic acid biosynthesis in plants [J]. Nature, 2025. (IF 48.50)
? Tang L P, Zhai L M, Li J M, et al. Time-resolved reprogramming of single somatic cells into totipotent states during plant regeneration[J]. Cell, 2025. (IF 45.50)
? Yu Y, Li W, Liu Y, et al. A Zea genus-specific micropeptide controls kernel dehydration in maize[J]. Cell, 2025.(IF 45.50)
? Li S, Tian Y, Wu K, et al. Modulating plant growth–metabolism coordination for sustainable agriculture[J]. Nature, 2018.(IF 41.58)
? Wu K, Wang S, Song W, et al. Enhanced sustainable green revolution yield via nitrogen-responsive chromatin modulation in rice[J]. Science, 2020.(IF 41.03)
? Sheng C, Zhao J, Di Z, et al. Spatially resolved in vivo imaging of inflammation-associated mRNA via enzymatic fluorescence amplification in a molecular beacon[J]. Nature Biomedical Engineering, 2022.(IF 26.80)
? Lin J L, Chen L X, Wu W K, et al. Single-cell RNA sequencing reveals a hierarchical transcriptional regulatory network of terpenoid biosynthesis in cotton secretory glandular cells[J]. Molecular plant, 2023.(IF 17.10)
? Lin J L, Fang X, Li J X, et al. Dirigent gene editing of gossypol enantiomers for toxicity-depleted cotton seeds[J]. Nature Plants, 2023.(IF 15.80)
? Mo J, Chen Z, Qin S, et al. TRADES: targeted RNA demethylation by suntag system[J]. Advanced Science, 2020.(IF 15.80)
? Tang S, Guo N, Tang Q, et al. Pyruvate transporter BnaBASS2 impacts seed oil accumulation in Brassica napus[J]. Plant Biotechnology Journal, 2022.(IF 13.26)
? Nie W, Wu G, Zhang J, et al. Responsive exosome nano‐bioconjugates for synergistic cancer therapy[J]. Angewandte Chemie International Edition, 2020.(IF 12.25)
? Liu S, Fan L, Liu Z, et al. A Pd1–Ps–P1 feedback loop controls pubescence density in soybean[J]. Molecular plant, 2020.(IF 12.08)
? Shi Q, Xia Y, Xue N, et al. Modulation of starch synthesis in Arabidopsis via phytochrome B‐mediated light signal transduction[J]. Journal of Integrative Plant Biology, 2024.(IF 11.40)
? Zheng Q, Xing J, Li X, et al. PRDM16 suppresses ferroptosis to protect against sepsis-associated acute kidney injury by targeting the NRF2/GPX4 axis[J]. Redox Biology, 2024.(IF 10.70)
使用 TransStart? Green qPCR SuperMix (AQ101) 產(chǎn)品發(fā)表的部分文章:
? Tang L P, Zhai L M, Li J M, et al. Time-resolved reprogramming of single somatic cells into totipotent states during plant regeneration[J]. Cell, 2025. (IF 45.50)
? Li S, Tian Y, Wu K, et al. Modulating plant growth–metabolism coordination for sustainable agriculture[J]. Nature, 2018.(IF 41.58)
? Wu K, Wang S, Song W, et al. Enhanced sustainable green revolution yield via nitrogen-responsive chromatin modulation in rice[J]. Science, 2020.(IF 41.03)
? Sheng C, Zhao J, Di Z, et al. Spatially resolved in vivo imaging of inflammation-associated mRNA via enzymatic fluorescence amplification in a molecular beacon[J]. Nature Biomedical Engineering, 2022.(IF 26.80)
? Lei C, Kan H, Xian X, et al. FAM3A reshapes VSMC fate specification in abdominal aortic aneurysm by regulating KLF4 ubiquitination[J]. Nature Communications, 2023.(IF 16.60)
? Song N, Xu H, Liu J, et al. Design of a highly potent GLP-1R and GCGR dual-agonist for recovering hepatic fibrosis[J]. Acta Pharmaceutica Sinica B, 2022.(IF 14.90)
? Zhao J, Chu H, Zhao Y, et al. A NIR light gated DNA nanodevice for spatiotemporally controlled imaging of microRNA in cells and animals[J]. Journal of the American Chemical Society, 2019.(IF 14.69)
? Xue S, Zhang T, Wang X, et al. Cu, Zn dopants boost electron transfer of carbon dots for antioxidation[J]. Small, 2021.(IF 13.28)
? Tang S, Guo N, Tang Q, et al. Pyruvate transporter BnaBASS2 impacts seed oil accumulation in Brassica napus[J]. Plant Biotechnology Journal, 2022.(IF 13.26)
? Ren X, Li Y, Zhou Y, et al. Overcoming the compensatory elevation of NRF2 renders hepatocellular carcinoma cells more vulnerable to disulfiram/copper-induced ferroptosis[J]. Redox biology, 2021.(IF 11.79)
? Hu G, Long C, Hu L, et al. Blood chromium exposure, immune inflammation and genetic damage: Exploring associations and mediation effects in chromate exposed population[J]. Journal of Hazardous Materials, 2022.(IF 10.58)
? Zhang L, Xue S, Ren F, et al. An atherosclerotic plaque-targeted single-chain antibody for MR/NIR-II imaging of atherosclerosis and anti-atherosclerosis therapy[J]. Journal of Nanobiotechnology, 2021.(IF 10.44)
? Zhao K, Wang L, Qiu D, et al. PSW1, an LRR receptor kinase, regulates pod size in peanut[J]. Plant Biotechnology Journal, 2023.(IF 10.10)
使用 ProteinFind? Anti-HA Mouse Monoclonal Antibody (HT301) 產(chǎn)品發(fā)表的部分文章:
? Tang L P, Zhai L M, Li J M, et al. Time-resolved reprogramming of single somatic cells into totipotent states during plant regeneration[J]. Cell, 2025. (IF 45.50)
? Fan H, Quan S, Ye Q, et al. A molecular framework underlying low-nitrogen-induced early leaf senescence in Arabidopsis thaliana[J]. Molecular Plant, 2023.(IF 27.50)
? Yang L, Li D, Guo W, et al. WD40 protein-mediated crosstalk among three epigenetic marks regulates chromatin states and yield in rice[J]. Molecular Plant, 2025.(IF 24.10)
? Peng J, Zhang Q, Tang L P, et al. LEC2 induces somatic cell reprogramming through epigenetic activation of plant cell totipotency regulators[J]. Nature Communications, 2025.(IF 15.70)
? Li X, Wang X, Liu X, et al. A UFD1 variant encoding a microprotein modulates UFD1f and IPMK ubiquitination to play pivotal roles in anti-stress responses[J]. Nature Communications, 2025.(IF 15.70)
? Zheng C, Zhang B, Li Y, et al. Donafenib and GSK‐J4 Synergistically Induce Ferroptosis in Liver Cancer by Upregulating HMOX1 Expression[J]. Advanced Science, 2023.(IF 15.10)
? Li Q, Yang G, Ren B, et al. ZC3H14 facilitates backsplicing by binding to exon-intron boundary and 3′ UTR[J]. Molecular Cell, 2024.(IF 14.50)
? Zhang H, Huang C, Gao C, et al. Evolutionary‐Distinct Viral Proteins Subvert Rice Broad‐Spectrum Antiviral Immunity Mediated by the RAV15‐MYC2 Module[J]. Advanced Science, 2025.(IF 14.30)
? Ma A, Zhang D, Wang G, et al. Verticillium dahliae effector VDAL protects MYB6 from degradation by interacting with PUB25 and PUB26 E3 ligases to enhance Verticillium wilt resistance[J]. The Plant Cell, 2021.(IF 11.27)
? Wang B, Xue P, Zhang Y, et al. OsCPK12 phosphorylates OsCATA and OsCATC to regulate H2O2 homeostasis and improve oxidative stress tolerance in rice[J]. Plant Communications, 2023.(IF 10.50)
? Li W, Xiong Y, Lai L B, et al. The rice RNase P protein subunit Rpp30 confers broad‐spectrum resistance to fungal and bacterial pathogens[J]. Plant Biotechnology Journal, 2021.(IF 9.80)
? Wang Y, Shu H, Qu Y, et al. PKM2 functions as a histidine kinase to phosphorylate PGAM1 and increase glycolysis shunts in cancer[J]. The EMBO Journal, 2024.(IF 9.50)
? Yang Q, Tan S, Wang H L, et al. Spliceosomal protein U2B ″delays leaf senescence by enhancing splicing variant JAZ9β expression to attenuate jasmonate signaling in Arabidopsis[J]. New Phytologist, 2023.(IF 9.40)
? Fan G, Yang Y, Li T, et al. A Phytophthora capsici RXLR effector targets and inhibits a plant PPIase to suppress endoplasmic reticulum-mediated immunity[J]. Molecular Plant, 2018.(IF 9.33)
? Qi H, Yu J, Yuan X, et al. The somatic embryogenesis receptor kinase TaSERK1 participates in the immune response to Rhizoctonia cerealis infection by interacting and phosphorylating the receptor-like cytoplasmic kinase TaRLCK1B in wheat[J]. International Journal of Biological Macromolecules, 2023.(IF 8.20)
使用 pEASY?-Blunt E2 Expression Kit (CE211) 產(chǎn)品發(fā)表的部分文章:
? Tang L P, Zhai L M, Li J M, et al. Time-resolved reprogramming of single somatic cells into totipotent states during plant regeneration[J]. Cell, 2025. (IF 45.50)
? Yang L, Cheng Y, Yuan C, et al. The long noncoding RNA VIVIpary promotes seed dormancy release and pre-harvest sprouting through chromatin remodeling in rice[J]. Molecular plant, 2025. (IF 24.10)
? Xiao M, Wang B, Feng Y, et al. Three candidate 2-(2-phenylethyl) chromone-producing type III polyketide synthases from Aquilaria sinensis (Lour.) Gilg have multifunctions synthesizing benzalacetones, quinolones and pyrones[J]. Industrial Crops and Products, 2022. (IF 6.45)
? Zhao Y, Zheng Z, Zhang X, et al. Molecular Cloning and Expression Analysis of the Cryptochrome Gene CiPlant-CRY1 in Antarctic Ice Alga Chlamydomonas sp. ICE-L[J]. Plants, 2022. (IF 5.40)