国产精品福利在线观看免费不卡,亚洲国产天堂久久综合网,精品亚洲一区二区三区在线观看,中文字幕在线免费看线人,91免费精品国偷自产在线不卡
首頁(yè) 新聞動(dòng)態(tài) 文章詳情

【助力科研】全式金試劑助力我國(guó)科研團(tuán)隊(duì)破解“植物細(xì)胞全能性”機(jī)制之謎

文章信息

文章題目:Time-resolved reprogramming of single somatic cells into totipotent states during plant regeneration

期刊:Cell

發(fā)表時(shí)間:2025 年 9 月 16 日

主要內(nèi)容:山東農(nóng)業(yè)大學(xué)張憲省教授和蘇英華教授研究團(tuán)隊(duì)首次完整揭示了單個(gè)植物體細(xì)胞如何通過基因重編程“改變命運(yùn)”,最終發(fā)育為完整植株的全過程。該成果不僅破解了困擾科學(xué)界百余年的“植物細(xì)胞全能性”機(jī)制之謎,也為作物遺傳改良與高效再生提供了全新理論支撐。

原文鏈接:

https://doi.org/10.1016/j.cell.2025.08.031

使用TransGen產(chǎn)品:

EasyScript? One-Step gDNA Removal and cDNA Synthesis SuperMix (AE311)

TransStart? Green qPCR SuperMix (AQ101)

ProteinFind? Anti-HA Mouse Monoclonal Antibody (HT301)

pEASY?-Blunt E2 Expression Kit (CE211)

Time-resolved reprogramming of single somatic cells into totipotent states during plant regeneration 

研究背景

1902年,植物細(xì)胞全能性概念被提出,即植物細(xì)胞在適宜條件下可脫分化為全能干細(xì)胞,進(jìn)而發(fā)育為完整植株。然而,其分子機(jī)制始終未解,2005 年《科學(xué)》雜志將“單個(gè)體細(xì)胞如何發(fā)育成完整植株”列為最具挑戰(zhàn)的 125 個(gè)科學(xué)問題之一。

文章概述

研究團(tuán)隊(duì)首先建立了“誘導(dǎo)單細(xì)胞起源的體細(xì)胞胚胎發(fā)生”穩(wěn)定體系,并系統(tǒng)尋找了全能干細(xì)胞的分子標(biāo)記。利用單細(xì)胞測(cè)序、活體成像等技術(shù),首次捕捉到單個(gè)植物細(xì)胞分裂全過程。研究發(fā)現(xiàn),轉(zhuǎn)錄因子 LEC2 與 SPCH 協(xié)同作用激活生長(zhǎng)素合成,使細(xì)胞內(nèi)生長(zhǎng)素特異性大量積累。這一過程促使原本注定發(fā)育為氣孔的前體細(xì)胞脫離氣孔發(fā)育路徑,轉(zhuǎn)化為全能干細(xì)胞,進(jìn)而啟動(dòng)胚胎發(fā)生。研究進(jìn)一步揭示,氣孔前體細(xì)胞存在一個(gè)命運(yùn)分岔點(diǎn):細(xì)胞要么繼續(xù)分化為氣孔,要么進(jìn)入“GMC-auxin”中間態(tài)。在這一中間態(tài)下,細(xì)胞通過染色質(zhì)重塑、翻譯調(diào)控和生長(zhǎng)素信號(hào)的共同作用,激活胚胎發(fā)生程序,推動(dòng)細(xì)胞命運(yùn)從氣孔分化轉(zhuǎn)向全能干細(xì)胞,最終發(fā)育為完整植株。該研究在世界上首次全面解析了單個(gè)植物體細(xì)胞重編程形成全能干細(xì)胞并再生完整植株的分子機(jī)理,這一理論的解析不僅有助于理解植物細(xì)胞發(fā)育的根本規(guī)律,也為精準(zhǔn)調(diào)控植物再生和定向改良作物性狀提供了全新的思路與技術(shù)工具。

 模式圖展示氣孔前體細(xì)胞的兩條發(fā)育路徑

模式圖展示氣孔前體細(xì)胞的兩條發(fā)育路徑

全式金生物產(chǎn)品支撐

優(yōu)質(zhì)的試劑是科學(xué)研究的利器。全式金生物的反轉(zhuǎn)錄試劑(AE311)、qPCR 試劑(AQ101)、抗 HA 鼠單克隆抗體(HT301)、E2 平端克隆原核表達(dá)載體(CE211)助力本研究。產(chǎn)品自上市以來,憑借優(yōu)異的性能,深受客戶青睞,多次榮登知名期刊,助力科學(xué)研究。

EasyScript? One-Step gDNA Removal and cDNA Synthesis SuperMix (AE311)

本產(chǎn)品以 RNA 為模板,在同一反應(yīng)體系中,合成第一鏈 cDNA 的同時(shí)去除 RNA 模板中殘留的基因組 DNA。反應(yīng)結(jié)束后,只需在 85℃ 加熱 5 秒鐘,即可同時(shí)失活 TranScript? RT/RI 與 gDNA Remover。

產(chǎn)品特點(diǎn)

? 在同一反應(yīng)體系中,同時(shí)完成反轉(zhuǎn)錄與基因組 DNA 的去除,操作簡(jiǎn)便,降低污染機(jī)率。

? 產(chǎn)物用于 qPCR:反轉(zhuǎn)錄 15 分鐘;產(chǎn)物用于 PCR:反轉(zhuǎn)錄 30 分鐘。

? 反應(yīng)結(jié)束后,同時(shí)熱失活 RT/RI 與 gDNA Remover。與傳統(tǒng)的用 DNase I 預(yù)處理 RNA 的方法相比,避免了處理后熱失活 DNase I 對(duì) RNA 的損傷。

? 合成片段≤8 kb。

TransStart? Green qPCR SuperMix (AQ101)

本產(chǎn)品含雙封閉法 TransStart? Taq 新型熱啟動(dòng)酶、優(yōu)化的雙陽(yáng)離子緩沖液、SYBR Green I 熒光染料、dNTPs、PCR 增強(qiáng)劑、PCR 穩(wěn)定劑。本產(chǎn)品濃度為 2×,使用時(shí)只需加入模板、引物、Passive Reference Dye 和水,使其工作濃度為 1×,即可進(jìn)行反應(yīng)。

產(chǎn)品特點(diǎn)

? 靈敏度高,特異性強(qiáng)。

? 雙陽(yáng)離子緩沖液,增強(qiáng)特異性,減少引物二聚體形成,數(shù)據(jù)準(zhǔn)確。

? 配有適用于不同機(jī)型的 Passive Reference Dye (調(diào)整 PCR 加樣誤差引起的管間差異),數(shù)據(jù)準(zhǔn)確。

ProteinFind? Anti-HA Mouse Monoclonal Antibody (HT301)

本產(chǎn)品為抗 HA 標(biāo)簽鼠單克隆抗體,屬 IgG2b 同型,免疫原為人工合成的 HA 標(biāo)簽多肽序列(YPYDVPDYA)。

產(chǎn)品特點(diǎn)

? 高純度的抗小鼠單克隆抗體,特異性強(qiáng)。

? 高度特異識(shí)別重組蛋白 C 末端、 N 末端或內(nèi)部的 HA 標(biāo)簽(YPYDVPDYA)。

? 適用于定性或定量檢測(cè) HA 融合表達(dá)蛋白。

pEASY?-Blunt E2 Expression Kit (CE211)

本產(chǎn)品利用 5 分鐘快速平端克隆技術(shù)克隆 PCR 產(chǎn)物;利用 T7lac 啟動(dòng)子嚴(yán)謹(jǐn)調(diào)控、高效表達(dá)目的基因。對(duì)照插入片段 750  bp,表達(dá)的蛋白分子量約 27 kDa。

產(chǎn)品特點(diǎn)

? 快速:僅需 5 分鐘。

? 簡(jiǎn)單:加入片段即可。

? 高效:陽(yáng)性率高。

? T7lac 啟動(dòng)子嚴(yán)謹(jǐn)調(diào)控表達(dá)。

? C 端 6×His 蛋白純化標(biāo)簽,方便純化重組蛋白。

使用 EasyScript? One-Step gDNA Removal and cDNA Synthesis SuperMix (AE311) 產(chǎn)品發(fā)表的部分文章:

Wang Y K, Song S Y, Zhang W X, et al. Deciphering phenylalanine-derived salicylic acid biosynthesis in plants [J]. Nature, 2025. (IF 48.50)

Tang L P, Zhai L M, Li J M, et al. Time-resolved reprogramming of single somatic cells into totipotent states during plant regeneration[J]. Cell, 2025. (IF 45.50)

Yu Y, Li W, Liu Y, et al. A Zea genus-specific micropeptide controls kernel dehydration in maize[J]. Cell, 2025.(IF 45.50)

Li S, Tian Y, Wu K, et al. Modulating plant growth–metabolism coordination for sustainable agriculture[J]. Nature, 2018.(IF 41.58)

Wu K, Wang S, Song W, et al. Enhanced sustainable green revolution yield via nitrogen-responsive chromatin modulation in rice[J]. Science, 2020.(IF 41.03)

Sheng C, Zhao J, Di Z, et al. Spatially resolved in vivo imaging of inflammation-associated mRNA via enzymatic fluorescence amplification in a molecular beacon[J]. Nature Biomedical Engineering, 2022.(IF 26.80)

Lin J L, Chen L X, Wu W K, et al. Single-cell RNA sequencing reveals a hierarchical transcriptional regulatory network of terpenoid biosynthesis in cotton secretory glandular cells[J]. Molecular plant, 2023.(IF 17.10)

Lin J L, Fang X, Li J X, et al. Dirigent gene editing of gossypol enantiomers for toxicity-depleted cotton seeds[J]. Nature Plants, 2023.(IF 15.80)

Mo J, Chen Z, Qin S, et al. TRADES: targeted RNA demethylation by suntag system[J]. Advanced Science, 2020.(IF 15.80)

Tang S, Guo N, Tang Q, et al. Pyruvate transporter BnaBASS2 impacts seed oil accumulation in Brassica napus[J]. Plant Biotechnology Journal, 2022.(IF 13.26)

Nie W, Wu G, Zhang J, et al. Responsive exosome nano‐bioconjugates for synergistic cancer therapy[J]. Angewandte Chemie International Edition, 2020.(IF 12.25)

Liu S, Fan L, Liu Z, et al. A Pd1–Ps–P1 feedback loop controls pubescence density in soybean[J]. Molecular plant, 2020.(IF 12.08)

Shi Q, Xia Y, Xue N, et al. Modulation of starch synthesis in Arabidopsis via phytochrome B‐mediated light signal transduction[J]. Journal of Integrative Plant Biology, 2024.(IF 11.40)

Zheng Q, Xing J, Li X, et al. PRDM16 suppresses ferroptosis to protect against sepsis-associated acute kidney injury by targeting the NRF2/GPX4 axis[J]. Redox Biology, 2024.(IF 10.70)

使用 TransStart? Green qPCR SuperMix (AQ101) 產(chǎn)品發(fā)表的部分文章:

Tang L P, Zhai L M, Li J M, et al. Time-resolved reprogramming of single somatic cells into totipotent states during plant regeneration[J]. Cell, 2025. (IF 45.50)

Li S, Tian Y, Wu K, et al. Modulating plant growth–metabolism coordination for sustainable agriculture[J]. Nature, 2018.(IF 41.58)

Wu K, Wang S, Song W, et al. Enhanced sustainable green revolution yield via nitrogen-responsive chromatin modulation in rice[J]. Science, 2020.(IF 41.03)

Sheng C, Zhao J, Di Z, et al. Spatially resolved in vivo imaging of inflammation-associated mRNA via enzymatic fluorescence amplification in a molecular beacon[J]. Nature Biomedical Engineering, 2022.(IF 26.80)

Lei C, Kan H, Xian X, et al. FAM3A reshapes VSMC fate specification in abdominal aortic aneurysm by regulating KLF4 ubiquitination[J]. Nature Communications, 2023.(IF 16.60)

Song N, Xu H, Liu J, et al. Design of a highly potent GLP-1R and GCGR dual-agonist for recovering hepatic fibrosis[J]. Acta Pharmaceutica Sinica B, 2022.(IF 14.90)

Zhao J, Chu H, Zhao Y, et al. A NIR light gated DNA nanodevice for spatiotemporally controlled imaging of microRNA in cells and animals[J]. Journal of the American Chemical Society, 2019.(IF 14.69)

Xue S, Zhang T, Wang X, et al. Cu, Zn dopants boost electron transfer of carbon dots for antioxidation[J]. Small, 2021.(IF 13.28)

Tang S, Guo N, Tang Q, et al. Pyruvate transporter BnaBASS2 impacts seed oil accumulation in Brassica napus[J]. Plant Biotechnology Journal, 2022.(IF 13.26)

Ren X, Li Y, Zhou Y, et al. Overcoming the compensatory elevation of NRF2 renders hepatocellular carcinoma cells more vulnerable to disulfiram/copper-induced ferroptosis[J]. Redox biology, 2021.(IF 11.79)

Hu G, Long C, Hu L, et al. Blood chromium exposure, immune inflammation and genetic damage: Exploring associations and mediation effects in chromate exposed population[J]. Journal of Hazardous Materials, 2022.(IF 10.58)

Zhang L, Xue S, Ren F, et al. An atherosclerotic plaque-targeted single-chain antibody for MR/NIR-II imaging of atherosclerosis and anti-atherosclerosis therapy[J]. Journal of Nanobiotechnology, 2021.(IF 10.44)

Zhao K, Wang L, Qiu D, et al. PSW1, an LRR receptor kinase, regulates pod size in peanut[J]. Plant Biotechnology Journal, 2023.(IF 10.10)

使用 ProteinFind? Anti-HA Mouse Monoclonal Antibody (HT301) 產(chǎn)品發(fā)表的部分文章:

Tang L P, Zhai L M, Li J M, et al. Time-resolved reprogramming of single somatic cells into totipotent states during plant regeneration[J]. Cell, 2025. (IF 45.50)

Fan H, Quan S, Ye Q, et al. A molecular framework underlying low-nitrogen-induced early leaf senescence in Arabidopsis thaliana[J]. Molecular Plant, 2023.(IF 27.50)

Yang L, Li D, Guo W, et al. WD40 protein-mediated crosstalk among three epigenetic marks regulates chromatin states and yield in rice[J]. Molecular Plant, 2025.(IF 24.10)

Peng J, Zhang Q, Tang L P, et al. LEC2 induces somatic cell reprogramming through epigenetic activation of plant cell totipotency regulators[J]. Nature Communications, 2025.(IF 15.70)

Li X, Wang X, Liu X, et al. A UFD1 variant encoding a microprotein modulates UFD1f and IPMK ubiquitination to play pivotal roles in anti-stress responses[J]. Nature Communications, 2025.(IF 15.70)

Zheng C, Zhang B, Li Y, et al. Donafenib and GSK‐J4 Synergistically Induce Ferroptosis in Liver Cancer by Upregulating HMOX1 Expression[J]. Advanced Science, 2023.(IF 15.10)

Li Q, Yang G, Ren B, et al. ZC3H14 facilitates backsplicing by binding to exon-intron boundary and 3′ UTR[J]. Molecular Cell, 2024.(IF 14.50)

Zhang H, Huang C, Gao C, et al. Evolutionary‐Distinct Viral Proteins Subvert Rice Broad‐Spectrum Antiviral Immunity Mediated by the RAV15‐MYC2 Module[J]. Advanced Science, 2025.(IF 14.30)

Ma A, Zhang D, Wang G, et al. Verticillium dahliae effector VDAL protects MYB6 from degradation by interacting with PUB25 and PUB26 E3 ligases to enhance Verticillium wilt resistance[J]. The Plant Cell, 2021.(IF 11.27)

Wang B, Xue P, Zhang Y, et al. OsCPK12 phosphorylates OsCATA and OsCATC to regulate H2O2 homeostasis and improve oxidative stress tolerance in rice[J]. Plant Communications, 2023.(IF 10.50)

Li W, Xiong Y, Lai L B, et al. The rice RNase P protein subunit Rpp30 confers broad‐spectrum resistance to fungal and bacterial pathogens[J]. Plant Biotechnology Journal, 2021.(IF 9.80)

Wang Y, Shu H, Qu Y, et al. PKM2 functions as a histidine kinase to phosphorylate PGAM1 and increase glycolysis shunts in cancer[J]. The EMBO Journal, 2024.(IF 9.50)

Yang Q, Tan S, Wang H L, et al. Spliceosomal protein U2B ″delays leaf senescence by enhancing splicing variant JAZ9β expression to attenuate jasmonate signaling in Arabidopsis[J]. New Phytologist, 2023.(IF 9.40)

Fan G, Yang Y, Li T, et al. A Phytophthora capsici RXLR effector targets and inhibits a plant PPIase to suppress endoplasmic reticulum-mediated immunity[J]. Molecular Plant, 2018.(IF 9.33)

Qi H, Yu J, Yuan X, et al. The somatic embryogenesis receptor kinase TaSERK1 participates in the immune response to Rhizoctonia cerealis infection by interacting and phosphorylating the receptor-like cytoplasmic kinase TaRLCK1B in wheat[J]. International Journal of Biological Macromolecules, 2023.(IF 8.20)

使用 pEASY?-Blunt E2 Expression Kit (CE211) 產(chǎn)品發(fā)表的部分文章:

Tang L P, Zhai L M, Li J M, et al. Time-resolved reprogramming of single somatic cells into totipotent states during plant regeneration[J]. Cell, 2025. (IF 45.50)

Yang L, Cheng Y, Yuan C, et al. The long noncoding RNA VIVIpary promotes seed dormancy release and pre-harvest sprouting through chromatin remodeling in rice[J]. Molecular plant, 2025. (IF 24.10)

Xiao M, Wang B, Feng Y, et al. Three candidate 2-(2-phenylethyl) chromone-producing type III polyketide synthases from Aquilaria sinensis (Lour.) Gilg have multifunctions synthesizing benzalacetones, quinolones and pyrones[J]. Industrial Crops and Products, 2022. (IF 6.45)

Zhao Y, Zheng Z, Zhang X, et al. Molecular Cloning and Expression Analysis of the Cryptochrome Gene CiPlant-CRY1 in Antarctic Ice Alga Chlamydomonas sp. ICE-L[J]. Plants, 2022. (IF 5.40)

登錄

captcha

注冊(cè)

*收貨地址:
captcha

客服

微信

国产精品福利在线观看免费不卡,亚洲国产天堂久久综合网,精品亚洲一区二区三区在线观看,中文字幕在线免费看线人,91免费精品国偷自产在线不卡